

Power analyzer for panel with power quality measurement parameters

Description

CVM-A1500 is a panel mounted power quality analyzer with EMS (Energy Management Software) integrated. Its internal Web Server (html5) allows any user to have full installation control by using any web browser.

Designed to be installed in the most relevant or critical part of electric installations since it registers and monitors a wide range of variables (almost one year of data with RMS, maximum and minimum values). The device also registers power quality events such as swells, dips, interruptions (every half cycle) and transients (according to **IEC 61000-4-30** Class A). Any event will be immediately captured with the voltage and current waveform.

This model adds the measurement of power quality variables (defined in the standard **EN 50160**) such as flicker, unbalance (Kd) and asymmetry (Ka) coefficients or voltage and current harmonics decomposition up to 63th. In addition it is possible to monitor in real time the instantaneous waveforms of voltage and current through its oscilloscope function.

As an added value, **CVM-A1500** displays the number of events and transients on each affected phase with the level reached, duration and its associated waveform. In addition, those events are directly displayed in CBEMA, ITIC y SEMI-F47 graphs.

The smart design of the **CVM-A1500** allows users to customize their own screens in order to access to the information faster and easy. Remark that the device allows the connection though PowerStudio software to save and store, in a redundant way, all the information in a server or PC avoiding memory limits.

- Dimensions:144 x 144 mm
- Energy Management Software (EMS) included with historical data register
- Register of power quality events, waveforms and instantaneous parameters.
- Expandable up to 3 modules (inputs/outputs and communications)
- VGA color display with high definition
- IP 65 with airtight seal
- 5 voltage channels + 4 ITF current channels
- Active energy class 0,2S (IEC 62053-22)
- Universal switching power supply AC/DC or DC
- Ethernet communications (Web Server) + RS-485 (ModBus RTU or BACnet protocol)
- 5 user customizable screens
- 3 tariffs (selectable by digital input or by communications)
- Cost calculation(any currency) and emissions of kgCO,
- 2 relay outputs for alarms + 2 transistor outputs for alarms or pulses + 2 digital inputs to select tariff, to control logical states or pulse centralizer from any external meter.

Power analyzers for panel with power quality measurement parameters

Applications

- Control, monitoring and logging of the power quality in High and Low Voltage distribution panels. Performed directly or remotely thanks to its WEB server. Integration in SCADA systems through XML requests.
- 4 alarms (2 per transistor and 2 per relay), fully and independently programmable according to a low or high value, hysteresis, connection/disconnection delays, normally open or closed standby status and interlocking.
- Generation of impulses with transistor outputs, fully and independently configurable over any incremental parameter (energy, costs, kgCO₂, total meter or tariff hours).
- Transducer converting analogue signals to any instantaneous parameter measured or calculated by the unit, with built-in expansion modules with analogue outputs.
- Display of process signals featuring a built-in expansion module with analogue inputs, with optional reporting of these signals to SCADA systems through communications systems.
- Control of electrical load or alarm signal operations by programming the transistor or relay outputs that are built-in or added through expansion modules.
- Datalogger integrated with Web server and XML (log of historical data).

Technical features

Power circuit	Power supply voltage	85265 Vac / 120300 Vdc 20120 Vdc (SDC model)			
	AC frequency	5060 Hz			
	AC consumption	max 29,4 V·A			
	DC consumption	max 11,9 W			
		max 13,8 W (SDC model)			
Voltage measurement	Voltage range	500 V _{p-n} - 866 V _{p-p} (functional up to 600 V _{p-n} / 1000 V _{p-p})			
circuit					
	Frequency	4070 Hz			
	Measurement margin	7200% of the U_n for $U_n = 300$ Vac. (p-n)			
	Admissible overvoltage	750 Vac			
	Maximum power consumption (limited current)	< 0.15 VA			
Current measurement	Current measurement	4 (3 phases + 1 neutral)			
circuit	Input current	/5 A or/1 A or/250 mA			
	Minimum current for class	250 mA			
	Start-up current	10 mA			
	Measurement margin	0.2200% <i>I</i> _n (/5 A) 1200% <i>I</i> _n (/1 A) 4200% <i>I</i> _n (/250 mA)			
		4200% In (/	250 MA)		
	Admissible overload		250 mA) nt, 100 A t < 1 s		
	Consumption				
		2 I _n A permane < 0.9 VA	nt, 100 A t < 1 s	A in MC	
transformation ratios	Consumption Primary V: 500,000 (500 kV) Primary A: 999.9 to 1.0 (10 kA	2 I _n A permane < 0.9 VA) in/5 A and	nt, 100 A t < 1 s	in MC	
transformation ratios Maximum meter	Consumption Primary V: 500,000 (500 kV) Primary A: 999.9 to 1.0 (10 kA Prim V x Prim A < 60 MW	2 I _n A permane < 0.9 VA) in/5 A and < 1000 (2 GW)	nt, 100 A t < 1 s	\ in MC	
Maximum transformation ratios Maximum meter value (total) Accuracy class	Consumption Primary V: 500,000 (500 kV) Primary A: 999.9 to 1.0 (10 kA Prim V x Prim A < 60 MW Yes (Primary A / Secondary A)	2 I _n A permane < 0.9 VA) in/5 A and < 1000 (2 GW)	nt, 100 A t < 1 s	h in MC	
transformation ratios Maximum meter value (total)	Consumption Primary V: 500,000 (500 kV) Primary A: 999.9 to 1.0 (10 kA Prim V x Prim A < 60 MW Yes (Primary A / Secondary A)	2 I _n A permane < 0.9 VA) in/5 A and < 1000 (2 GW) ≥ 1000 (2 TW)	nt, 100 A t < 1 s /1 A, 632000 A	/250 mA	
transformation ratios Maximum meter value (total)	Consumption Primary V: 500,000 (500 kV) Primary A: 999.9 to 1.0 (10 kA Prim V x Prim A < 60 MW Yes (Primary A / Secondary A) Yes (Primary A / Secondary A)	2 I _n A permane < 0.9 VA) in/5 A and < 1000 (2 GW) ≥ 1000 (2 TW) /5 A 0,1 ±1 digit	nt, 100 A t < 1 s /1 A, 632000 A /1 A 0,1 ±1 digit	/250 mA 0,1 ±1 digit (20600 V _{a.c}) 0,5 ±1 digit	
transformation ratios Maximum meter value (total)	Consumption Primary V: 500,000 (500 kV) Primary A: 999.9 to 1.0 (10 kA Prim V x Prim A < 60 MW Yes (Primary A / Secondary A) Yes (Primary A / Secondary A) Voltage	$\begin{array}{c} 2 \ I_n \ A \ permane \\ < 0.9 \ VA \\ \hline \\ < 0.000 \ (2 \ GW) \\ \geq 1000 \ (2 \ GW) \\ \hline \\ \frac{>}{$	nt, 100 A t < 1 s /1 A, 632000 A $-\frac{/1 A}{0,1 \pm 1 \text{ digit}}$ (20600 V _{a.c}) 0,5 ±1 digit	/250 mA 0,1 ±1 digit (20600 V _{a.c}) 0,5 ±1 digit	
transformation ratios Maximum meter value (total)	Consumption Primary V: 500,000 (500 kV) Primary A: 999.9 to 1.0 (10 kA Prim V x Prim A < 60 MW Yes (Primary A / Secondary A) Yes (Primary A / Secondary A) Voltage Neutral voltage	2 /n A permane < 0.9 VA) in/5 A and < 1000 (2 GW) ≥ 1000 (2 TW) /5 A 0,1 ±1 digit (20600 V _{a.c}) 0,5 ±1 digit (55500 V _{a.c}) 0,1 ±1 digit	nt, 100 A t < 1 s /1 A, 632000 A 	$\begin{array}{c} \hline/250 \text{ mA} \\ \hline 0,1 \pm 1 \text{ digit} \\ (20600 \text{ V}_{a.c}) \\ \hline 0,5 \pm 1 \text{ digit} \\ (55500 \text{ V}_{a.c}) \\ \hline 0,1 \pm 1 \text{ digit} \end{array}$	
transformation ratios Maximum meter value (total)	Consumption Primary V: 500,000 (500 kV) Primary A: 999.9 to 1.0 (10 kA Prim V x Prim A < 60 MW Yes (Primary A / Secondary A) Yes (Primary A / Secondary A) Voltage Neutral voltage Current	$\begin{array}{c} 2 \ I_n \ A \ permane \\ < 0.9 \ VA \\ \hline \\ < 0.0 \ (2 \ GW) \\ \geq 1000 \ (2 \ GW) \\ \hline \\ \geq 1000 \ (2 \ GW) \\ \hline \\ \hline \\ = 1000 \ (2 \ GW) \\ \hline \\ \hline \\ = 1000 \ (2 \ GW) \\ \hline \\ = 1$	nt, 100 A t < 1 s /1 A, 632000 A /1 A 0.1 \pm 1 digit (20600 V _{a.c}) 0.5 \pm 1 digit (55500 V _{a.c}) 0.1 \pm 1 digit (0.011,2 A) 1 \pm 1 digit	$\begin{array}{c}/250 \text{ mA} \\ \hline 0.1 \pm 1 \text{ digit} \\ (20600 \text{ V}_{a.c}) \\ \hline 0.5 \pm 1 \text{ digit} \\ (55500 \text{ V}_{a.c}) \\ \hline 0.1 \pm 1 \text{ digit} \\ \hline (0.010,3 \text{ A}) \\ \hline 1 \pm 1 \text{ digit} \end{array}$	
transformation ratios Maximum meter value (total)	Consumption Primary V: 500,000 (500 kV) Primary A: 999.9 to 1.0 (10 kA Prim V x Prim A < 60 MW Yes (Primary A / Secondary A) Yes (Primary A / Secondary A) Voltage Neutral voltage Current Neutral current	$\begin{array}{c} 2 I_n A \text{ permane} \\ < 0.9 VA \\ \hline \\ < 0.9 VA \\ \hline \\ < 1000 (2 GW) \\ \geq 1000 (2 GW) \\ \hline \\ > 1000 (2 TW) \\ \hline \\/5 A \\ 0.1 \pm 1 \text{ digit} \\ (20600 V_{a.c}) \\ 0.5 \pm 1 \text{ digit} \\ (55500 V_{a.c}) \\ 0.1 \pm 1 \text{ digit} \\ (0.058 A) \\ \hline 1 \pm 1 \text{ digit} \\ (0,16 A) \\ \end{array}$	nt, 100 A t < 1 s /1 A, 632000 A /1 A 0.1 ±1 digit (20600 V _{a.c}) 0.5 ±1 digit (55500 V _{a.c}) 0.1 ±1 digit (0,011,2 A) 1 ±1 digit (0,051,2 A)	$\begin{array}{c}/250 \text{ mA} \\ \hline 0,1 \pm 1 \text{ digit} \\ (20600 \text{ V}_{a.c}) \\ \hline 0,5 \pm 1 \text{ digit} \\ (55500 \text{ V}_{a.c}) \\ \hline 0,1 \pm 1 \text{ digit} \\ (0,010,3 \text{ A}) \\ \hline 1 \pm 1 \text{ digit} \\ (\text{calculated}) \end{array}$	
transformation ratios Maximum meter value (total)	Consumption Primary V: 500,000 (500 kV) Primary A: 999.9 to 1.0 (10 kA Prim V x Prim A < 60 MW Yes (Primary A / Secondary A) Yes (Primary A / Secondary A) Voltage Neutral voltage Current Neutral current Active power	$\begin{array}{c} 2 I_n \text{ A permane} \\ < 0.9 \text{ VA} \\ \hline \\ < 0.000 (2 \text{ GW}) \\ \geq 1000 (2 \text{ GW}) \\ \geq 1000 (2 \text{ TW}) \\ \hline \\/5 \text{ A} \\ \hline \\ 0.1 \pm 1 \text{ digit} \\ (20600 \text{ V}_{a.c}) \\ \hline \\ 0.5 \pm 1 \text{ digit} \\ (55500 \text{ V}_{a.c}) \\ \hline \\ 0.1 \pm 1 \text{ digit} \\ (0.058 \text{ A}) \\ \hline \\ 1 \pm 1 \text{ digit} \\ \hline \\ 0.2 \pm 2 \text{ digits} \\ \hline \\ 1 \pm 1 \text{ digit} \\ \end{array}$	nt, 100 A t < 1 s /1 A, 632000 A /1 A 0,1 ±1 digit (20600 V _{a.c}) 0,5 ±1 digit (55500 V _{a.c}) 0,1 ±1 digit (0,011,2 A) 1 ±1 digit (0,051,2 A) 0,2 ±2 digits 1 ±1 digit	$\begin{array}{c} \hline/250 \text{ mA} \\ \hline 0,1 \pm 1 \text{ digit} \\ (20600 \text{ V}_{a.c}) \\ \hline 0,5 \pm 1 \text{ digit} \\ (55500 \text{ V}_{a.c}) \\ \hline 0,1 \pm 1 \text{ digit} \\ \hline (0,010,3 \text{ A}) \\ \hline 1 \pm 1 \text{ digit} \\ (calculated) \\ \hline 0,5 \pm 2 \text{ digits} \\ \hline 1 \pm 1 \text{ digit} \\ \end{array}$	
transformation ratios Maximum meter value (total)	Consumption Primary V: 500,000 (500 kV) Primary A: 999.9 to 1.0 (10 kA Prim V x Prim A < 60 MW Yes (Primary A / Secondary A) Yes (Primary A / Secondary A) Voltage Neutral voltage Current Neutral current Active power Reactive power	$\begin{array}{c} 2 \ I_n \ A \ permane \\ < 0.9 \ VA \\ \hline \\ < 0.0 \ VA \\ \hline \\ < 1000 \ (2 \ GW) \\ \hline \\ \geq 1000 \ (2 \ GW) \\ \hline \\ \geq 1000 \ (2 \ GW) \\ \hline \\ \hline \\ = 1000 \ (2 \ GW) \\ \hline \\ \hline \\ (20600 \ V_{a.c}) \\ \hline \\ 0,1 \ \pm 1 \ digit \\ (20600 \ V_{a.c}) \\ \hline \\ 0,5 \ \pm 1 \ digit \\ (0,058 \ A) \\ \hline \\ 1 \ \pm 1 \ digit \\ (0,16 \ A) \\ \hline \\ 0,2 \ \pm 2 \ digits \\ \hline \\ 1 \ \pm 1 \ digit \\ (0,056 \ A) \\ \hline \end{array}$	nt, 100 A t < 1 s /1 A, 632000 A /1 A 0,1 ±1 digit (20600 V _{a.c}) 0,5 ±1 digit (55500 V _{a.c}) 0,1 ±1 digit (0,011,2 A) 1 ±1 digit (0,021,2 A) 0,2 ±2 digits 1 ±1 digit (0,011,2 A)	$\begin{array}{c} \hline/250 \text{ mA} \\ \hline 0,1 \pm 1 \text{ digit} \\ (20600 \text{ V}_{a.c}) \\ \hline 0,5 \pm 1 \text{ digit} \\ (55500 \text{ V}_{a.c}) \\ \hline 0,1 \pm 1 \text{ digit} \\ (0,010,3 \text{ A}) \\ \hline 1 \pm 1 \text{ digit} \\ (calculated) \\ \hline 0,5 \pm 2 \text{ digits} \\ \hline 1 \pm 1 \text{ digit} \\ (0,010,3 \text{ A}) \\ \hline \end{array}$	

Power analyzers for panel with power quality measurement parameters

Technical features

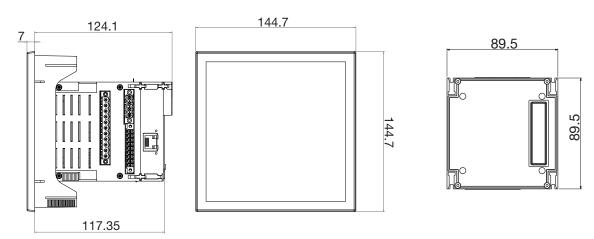
Connections				
Digital inputs	Selection of tariffs, states or external alarms			
	Туре	Optoisolated potential-free contact		
	Quantity	2		
	Activation current	5 mA (15 V maximum voltage of open contact		
	Insulation	4 kV		
Digital outputs	Generation of impulses or alarms			
	Туре	NPN transistor		
	Quantity	2		
	Maximum operation voltage	48 Vdc		
	Maximum switching current	130 mA		
	Maximum frequency	1 kHz		
	Pulse duration (T _{on} / T _{off})	0.3 / 0.7 ms (1 ms of a complete impulse)		
	Alarms			
	Туре	Relay		
	Quantity	2		
	Maximum operating power	1500 W		
	Maximum voltage, open contacts	250 Vac		
	Maximum switching current	6 A 3 x 10 ⁴ cycles		
	Electrical working life (400 V / 6 A)			
	Mechanical working life	1 x 107 cycles		
Built-in communications	Protocols	Modbus RTU / BACnet		
	Speed	9600115200		
	bits, parity, stop	8, n, 1 (configurable)		
Environmental	Working temperature	-10+50°C		
conditions	Relative humidity	595%		
	Altitude	2000 m		
Build features	Format	Assembly on 96x96 mm or 144x144 mm panel		
	Depth	1 module		
	Front panel IP protection	IP 40 (IP 65 with sealing gasket)		
	Rear panel IP protection	IP 30		
Safety	Designed for CAT III 300/520 Va.c. installations, in accordance with EN 61010 Double-insulated electric shock protection, class II			
Standards	IEC 62053-22, ANSI (class 0.2S), IEC 62053-24 (class 1) / ANSI C12.1 (class 2), class A acc. to IEC 61000-4-30, IEC 61010, IEC 61000, UNE-EN 55022 Measurement acc. to MID, UL certification IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-11, IEC 61000-4-4, IEC 61000-4-5			

References

144 x 144

Current measuring secondaries	Туре	
/5 or/1 A or250 mA	CVM-A1500-ITF-RS485-ICT2	
/5 or/1 A or250 mA	CVM-A1500-SDC-ITF-485-ICT2*	

* Power supply 20...120 Vdc


Power analyzers for panel with power quality measurement parameters

Expandable modules for CVM-A1500

Outputs	Digital Inp.	Analogue Inp.	Communication	Protocol	Туре
8 Trans.(*)	8	-	-	-	M-CVM-AB-8I-80TR
8 relay	8	-	-	-	M-CVM-AB-8I-80R
3 (0/420 mA)	-	4 (0/420 mA)	-	-	M-CVM-AB-4AI-8AO
Ethernet (RS-48	85 Bridge)			Modbus / TCP	M-CVM-AB-Modbus-TCPBridge
Ethernet (Ether	net Bridge)			Modbus / TCP	M-CVM-AB-Modbus-Switch
MBus				MBus	M-CVM-AB-MBUS
LonWorks				LonTalk ISO/IEC 14908 ANSI/EIA 7091	M-CVM-AB-LonWorks
-	-	-	-	Profibus/DP	M-CVM-AB-Profibus
			Description		Туре
			· ·		
			IP 65 sealing gasket for CVM-AB (144x144)		IP65-AB-144

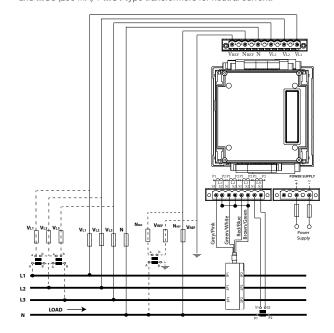
Dimensions

CVM-A1500

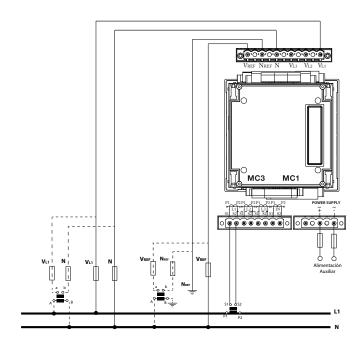
Window level: 138x138 mm

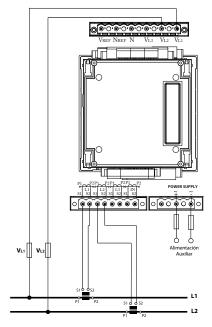
Note: Refer to the product manual for other options

Power analyzers for panel with power quality measurement parameters


Connections

Three-phase measuring with or without voltage transformer and current transformers.




Direct phase-phase measurement with current transformers

Three-phase measuring with or without voltage transformer and MC3 (250 mA) + MC1 type transformers for neutral current.

Measurement in single-phase system with or without voltage transformer

